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Abstract— In this paper, we address the problem of video rain
removal by considering rain occlusion regions, i.e., very low
light transmittance for rain streaks. Different from additive rain
streaks, in such occlusion regions, the details of backgrounds are
completely lost. Therefore, we propose a hybrid rain model to
depict both rain streaks and occlusions. Integrating the hybrid
model and useful motion segmentation context information,
we present a Dynamic Routing Residue Recurrent Network
(D3R-Net). D3R-Net first extracts the spatial features by a
residual network. Then, the spatial features are aggregated
by recurrent units along the temporal axis. In the temporal
fusion, the context information is embedded into the network
in a “dynamic routing” way. A heap of recurrent units takes
responsibility for handling the temporal fusion in given contexts,
e.g., rain or non-rain regions. In the certain forward and back-
ward processes, one of these recurrent units is mainly activated.
Then, a context selection gate is employed to detect the context
and select one of these temporally fused features generated by
these recurrent units as the final fused feature. Finally, this last
feature plays a role of “residual feature.” It is combined with
the spatial feature and then used to reconstruct the negative
rain streaks. In such a D3R-Net, we incorporate motion segmen-
tation, which denotes whether a pixel belongs to fast moving
edges or not, and rain type indicator, indicating whether a pixel
belongs to rain streaks, rain occlusions, and non-rain regions,
as the context variables. Extensive experiments on a series of
synthetic and real videos with rain streaks verify not only the
superiority of the proposed method over state of the art but also
the effectiveness of our network design and its each component.

Index Terms— Video rain removal, dynamic routing, spatial
temporal residue, recurrent neural network.

I. INTRODUCTION

BAD weather conditions cause a series of visibility degra-
dations and alter the content and color of images. Such

signal distortion and detail loss lead to the failure of many
outdoor computer vision applications, which generally rely
on clean video frames as their input. Rain streaks, as one of
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the most common degradations in rain frames, make severe
intensity fluctuations in small regions, and thus obstruct and
blur the scene.

In the past decades, many researchers have been ded-
icated to rain image/video restoration. The rain removal
from a single image [27], [32], [41], [47] solves this prob-
lem by signal separation between rain streaks and back-
ground images (non-rain images), based on their texture
appearances. Frequency domain representation [32], sparse
representation [41], Gaussian mixture model [37] and deep
networks [18], [65] are adopted as basic models to differentiate
rain streaks and background images. Furthermore, video-
based methods [1]–[3], [10], [16], [19], [21], [22], [70] solve
the problem based on both spatial and temporal redundan-
cies. Some works [19], [21], [22] built on physical mod-
els, such as directional and chromatic properties of rains.
Others [7], [10], [31], [35] further utilized temporal dynam-
ics, including continuity of background motions, random
appearing of streaks among frames, and explicit motion mod-
eling, to facilitate video rain removal.

These methods achieve good performance in some cases.
However, they still neglect some important issues:

• In real-world scenarios, degradations caused by rain
streaks are more complex. The additive rain model
widely used in previous methods [10], [32] is insufficient
to cover visual effects of some important degradations
in practice. When the light transmittance of rain streaks
is low, their corresponding background regions are
totally occluded, and the whole occlusion regions only
present the rain reliance.

• The spatial and temporal redundancies are considered
separately. These two kinds of information are
intrinsically correlated and complementary. The potential
of jointly exploiting the information is not fully explored.
Low rank based methods [35], [58] have made some
attempts. However, they usually rely on the assumption
of a static background. Therefore, their results may be
degraded when large and violent motions are included.

• Although some previous works [6], [28], [62] try to
include context information, e.g. categories [28] or
motion segmentations [6], [62], a general and easily
equipped framework for that purpose is lacked. These
previous works need deliberate expert efforts to embed
the context information to facilitate rain streak removal.
Once the commonly seen contexts or rain streak statistics
change, the pipeline needs to be rebuilt.

• For learning-based video rain streak removal, training
for recovery purposes remains challenging. The training
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relies on the video pairs synthesized from a large-scale
high-quality video dataset with various scenes and
objects. It is cost-heavy to collect such a dataset to
synthesize rain frames.

Considering these limitations of existing works, our goal is
to build a novel video rain model that can describe various
types of rain in practice, including both rain streaks and rain
occlusions. Then, based on this model, we further develop a
deep learning architecture to solve the corresponding inverse
problem. We aim to develop a systematic approach to train the
network with a rain video dataset synthesized from a medium-
sized high-quality video set.

To achieve these goals, we explore possible rain models and
deep learning architectures that can effectively restore clean
frames even when rain occlusion regions appear and are flex-
ible to embed context information. We first develop a hybrid
rain model to depict both rain streaks and occlusions. Then,
a Dynamic Routing Residue Recurrent Network (D3R-Net) is
built to seamlessly integrate context variable estimations, and
a rain removal based on both spatial appearance feature and
temporal coherence. The rain type indicator and motion seg-
mentation are embedded into D3R-Net in a dynamic routing
way, flexible to be extended to incorporate other context infor-
mation. This paper is an extension of our previous conference
paper [38]. Based on the rain degradation model in the prelim-
inary work, we choose a parallel technical route to address the
problem of the video rain removal with dynamically detected
video contexts. Novel deep recurrent networks as well as a
more effective basic component – spatial temporal residue
learning – for video modeling are developed. At the same time,
a flexible framework to detect and incorporate video contexts
is built. We add extensive experimental analysis to evaluate the
effectiveness of the proposed framework on several datasets.
Our contributions are as follows,

• We propose a novel hybrid video rain model that visits
various rain cases including rain occlusions. In rain occlu-
sion regions, the pixels are replaced by rain reliance. This
regional information is then embedded into the proposed
method for video deraining.

• We are the first to solve the problem of video rain
removal with deep recurrent networks. Specifically,
a D3R-Net is proposed. The rain streaks appear ran-
domly among frames, whereas the motions of back-
grounds are tractable. Considering that, recurrent neural
networks (RNN) are employed to encode the information
of adjacent background frames from their degraded obser-
vations, obtaining representative features for deraining.
Furthermore, our D3R-Net utilizes a spatial temporal
residue learning, where the temporally fused feature plays
a role of “residue feature”.

• Based on the proposed refined hybrid rain model, and
further considerations of the commonly seen context
variables that appeared in previous works, D3R-Net is
seamlessly integrated with motion segmentation and rain
type indicator in a “dynamic routing” framework. Its core
idea is that, the network components have several copies.
Each copy is good at handling the rain removal in a
given context. Then, in each training or testing iteration,

the network is constructed dynamically based on the
detected context. This “dynamic routing” framework and
the added contexts lead to a performance gain.

The remainder of this paper is organized as follows:
Section II gives a brief overview of the related work.
In Section III, we present our hybrid video rain model and
the related rain removal context. In Section IV, the proposed
dynamic routing residue recurrent neural network is built step
by step and then the context information is embedded into the
network in the “dynamic routing” way. Experimental results
are illustrated in Section V. Finally, concluding remarks are
given in Section VI.

II. RELATED WORK

A. Single Image Rain Removal

Single image deraining is a highly ill-posed problem and
is addressed by a signal separation or texture classification
route. Kang et al. [32] attempted to separate rain streaks from
the high frequency layer by sparse coding. Then, a generalized
low rank model [10] was proposed, where the rain streak layer
is assumed to be low rank. Kim et al. [34] first detected rain
streaks and then removed them with the nonlocal mean filter.
Luo et al. [41] proposed a discriminative sparse coding method
to separate rain streaks from background images. In [37],
Gaussian mixture modsels are exploited to separate the rain
streaks.

The presence of deep learning promoted the develop-
ment of image processing. The related topics include super-
resolution [15], [24], [33], [36], [59], [61], [63], [64], [66],
compression artifacts removal [4], [13], [71], denoising [8],
[9], [68], low light enhancement [40], [53], [57], image and
video compression [25], [26], [49], [60], et al. As for the
single image rain removal, deep learning-based methods also
led to a fast development and offered new state-of-the-art
performance. In [17] and [18], deep networks that take the
image detail layer as their inputs and predict the negative
residues are constructed. They have good capacities to keep
texture details. But they cannot handle heavy rain cases where
rain streaks are dense. Yang et al. [65] proposed a deep
joint rain detection and removal method was proposed to
recurrently remove rain streaks and accumulations, obtaining
impressive results in heavy rain cases. Zhu et al. [72] proposed
a rain removal method by decomposing the rain image into
a rain-free background layer R and a rain-streak layer B .
The method then removes rain-streak details from B and
removes non-streak details from R alternately. In [67], a novel
density-aware multi-stream densely connected convolutional
neural network is proposed for joint rain density estimation
and rain streak removal. Chang et al. [5] aimed to address
line pattern noise removal, and used an image decomposi-
tion model to map the input image to a domain where the
line pattern appearance has an extremely distinct low-rank
structure. Wang et al. [52] regarded rain removal as an image-
to-image translation problem, and developed a perceptual
generative adversarial network to address it. In this network,
the generative adversarial loss and the perceptual adversarial
loss are integrated, and the sub-modules of the network are
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trained alternately. Compared with these works, which utilize
deep networks to address the problem of single image rain
removal, our work explores to remove rains from videos
by jointly modeling intra-frame dependencies and inter-frame
motion dynamics with recurrent neural networks.

B. Video Rain Removal

Garg and Nayar were the first to focus on modeling rains,
i.e. the photometric appearance of rain drops [21] and address-
ing rain detection and removal based on dynamic motion of
rain drops and irradiance constraint [19], [22]. In their subse-
quent work [20], camera settings are explored to control the
visibility of rain drops. These early attempts heavily rely on the
linear space-time correlation of rain drops, and thus fail when
rain streaks are diversified in scales and densities. Later works
formulate rain streaks with more flexible and intrinsic models.
In [70], the temporal and chromatic properties of rain are
visited to differentiate rain, background and moving objects.
In [39], a theory of chromatic property of rain is developed.
Barnum et al. [1] utilized the features in Fourier domain
for rain removal. Santhaseelan and Asari [44] developed
phase congruency features to detect and remove rain streaks.
Successive works make their efforts in distinguishing fast
moving edges and rain streaks. In [2] and [3], the size, shape
and orientation of rain streaks are used as discriminative
features. In [10], the spatio-temporal correlation of local
patches are encoded by a low-rank model to separate rain
streaks and natural frame signals. Jiang et al. [31] further
considered the overall directional tendency of rain streaks,
and used two unidirectional total variation regularizers to
constrain the separation of rain streaks and background. The
presence of learning-based method, with improved modeling
capacity, brings in new opportunities. Chen and Chau [7]
proposed to embed motion segmentation by Gaussian mix-
ture model into rain detection and removal. Tripathi and
Mukhopadhyay [50], [51] trained Bayes rain detector based
on spatial and temporal features. Kim et al. [35] trained an
SVM to refine the roughly detected rain maps. Wei et al. [58]
encoded rain streaks as patch-based mixtures of Gaussian,
which is capable of finely adapting a wider range of rain
variations. In [43], a matrix decomposition model is presented
to divide rain streaks or snowflakes into two categories:
sparse and dense ones, for video desnowing and deraining.
Compared with previous methods, our work is the first one to
employ deep networks to handle video rain removal. Beyond
that, instead of hand-crafting pipelines to model rain context,
we provide a flexible and convenient framework – “dynamic
routing” for that purpose to facilitate video rain removal.

III. HYBRID VIDEO RAIN MODEL AND RAIN

REMOVAL CONTEXT

In this section, we first focus on building a single rain
model that can describe non-rain, rain streak and rain occlu-
sion regions. Then, we discuss the context of rain removal,
i.e., the degradation type in this hybrid video rain model,
which can be regarded as side information to benefit rain
removal.

Fig. 1. Left and middle panels: two adjacent rain frames. Right panel: the
rain streaks in these rain frames, denoted in blue and red colors, respectively.
The presented streaks have similar shapes and directions, and however, their
distributions in spatial locations are uncorrelated.

Fig. 2. Examples of rain occlusions in video frames. Compared with additive
rain streaks, the rain occlusions (denoted in red color) contain little structural
details of the background image.

A. Additive Rain Model

The widely used rain model [28], [37], [41] is expressed as:

O = B + S, (1)

where B is the background frame without rain streaks, and S is
the rain streak frame. O is the captured image with rain streaks.
Based on Eq. (1), rain removal is regarded as a signal separa-
tion problem [37], [41], [65]. Namely, given the observation O,
removing rain streaks is to estimate the background B and rain
streak S, based on the different characteristics of the rain-free
images and rain streaks.

This single-frame rain synthesis model in Eq. (1) can be
extended to a multi-frame one by adding a time dimension as
follows,

Ot = Bt + St , t = 1, 2, ..., N, (2)

where t and N signify the current time-step and total number
of the frames, respectively. Rain streaks St are assumed to
be independent identically distributed random samples [46].
Their locations across the frames are uncorrelated, as shown
in Fig. 1.

However, in practice, degradations generated by rain streaks
are very complex. For example, when the rain level is moder-
ate or even heavy, the light transmittance of rain drop becomes
low and the rain region of Ot presents identical intensities,
as shown in Fig. 2. In this case, the signal superposition of
rain frames includes rain streaks and rain occlusions. Based
on Eq. (1), the deduced St = Ot −Bt deviates from its original
distribution and contains more structure details. Rain removal
in rain occlusion regions needs to remove the rain reliance
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and fill in the missing details. Thus, it is harder to learn a
mixture mapping that restores signals in all regions without
distinction. It is meaningful to build a unified hybrid model
that describes both two kinds of degradation to guide solving
the task of rain removal.

B. Occlusion-Aware Rain Model

To address this issue, we propose a hybrid rain model that is
adaptive to model rain occlusions. In such a model, all pixels
in rain frames are classified into two groups: 1) the ones
following the additive rain model in Eq. (1); 2) the others
whose pixel values are just equal to the rain reliance. The
formulation of such a hybrid rain model is given as follows,

Ot = (1 − αt ) (Bt + St ) + αt At , (3)

where At is the rain reliance map and αt is an alpha matting
map defined as follows,

αt (i, j) =
{

1, if (i, j) ∈ �S,
0, if (i, j) /∈ �S,

(4)

where �S is the region where the light transmittance of rain
drop is low, which is defined as rain occlusion region.

C. Rain Removal Context

Based on Eqs. (3) and (4), the inverse mapping of the rain
streaks and rain occlusions is quite different. Thus, estimat-
ing αt is important for rain removal. Besides, as summarized
in previous works [2], [3], [7], one of the most difficult issues
for video rain removal is the overlapping of fast moving
edges and rain streaks in the feature space. Thus, a preferred
method should first detect these context variables, e.g. rain
type and motion segmentation, and then perform rain removal
accordingly. In our work, the difference of adjacent frames
are used as a standard to classify motion regions. For ground
truth background frames, if the square of the difference of
two adjacent frames is greater than 0.01, the region is denoted
as motion regions. Till now, we regard rain type and motion
segmentation as the context of rain removal. In the next
section, we build a deep network architecture to predict the
context and utilize the information to facilitate rain removal.

IV. DYNAMIC ROUTING RESIDUE RECURRENT NEURAL

NETWORK FOR RAIN REMOVAL

In this section, we first construct a spatial-temporal residue
recurrent neural network step by step for rain removal as
shown in Fig. 3. Then, we extend the network to a dynamic
routing RNN, as shown in Fig. 5. In each recurrence of the
network, there are multiple recurrent unit paths, but only
one path is mainly activated based on the detected context,
as shown in Fig. 4.

A. Spatial-Temporal Residue Recurrent Network

Single frame rain streak removal aims to recover the rain-
free background (target frame) based on a rain image (input
frame). Several popular image processing networks [14], [56],
[64] use a convolutional neural network (CNN) model to

Fig. 3. Network architectures from a vanilla convolutional neural net-
work (CNN) to our proposed spatial-temporal residue recurrent network.
(a) vanilla CNN. (b) CNN with LR bypass connections. (c) CNN has both LR
and feature bypass connections. (ResNet) (d) Multiple ResNets are connected
by convolutional recurrent units to model inter-frame dependencies. (e) Gated
recurrent units (R-Unit) are used to connect different ResNets to model inter-
frame redundancies. (f) Temporal fused features by convolutional recurrent
units are added with the spatial ones and play a role of “residual features”
that are complements to spatial features. (g) Temporal fused features by gated
recurrent unit (R-Unit) are added with the spatial ones and play a role of
“residual features” that are complements to spatial features. (Best viewed in
color.)

Fig. 4. Network architecture of dynamic routing CNN and RNN. (a) vanilla
CNN. (b) CNN with dynamic routing mechanism. (Dynamic Routing CNN)
The convolutional path is constructed based on the detected rain removal
context. (c) RNN with dynamic routing mechanism. (Dynamic Routing
RNN) The recurrent unit path is built based on the detected rain removal
context. (Best viewed in color.)

extract features from the input frame and then map it to
the target one. A typical CNN architecture consists of three
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Fig. 5. The framework of Dynamic Routing Recurrent Redidue Network (D3R-Net). We first employ a single frame CNN (SF-CNN) to extract features Ft
of the t-th frame Ot . Then, the subsequent network components predict the clean background frames by two paths: 1) single-frame path (denoted by blue
lines); 2) multi-frame path (denoted by black lines and red lines). The multi-frame path works in a dynamic routing way. (Best viewed in color).

convolutional layers as proposed in [14] which jointly per-
forms sparse coding and reconstruction over the input frames
as shown in Fig. 3(a). However, striving for directly recovering
the complete target frames may make the CNN models fail
to recover some important high frequency details. In contrast,
using deep networks to model the difference signals [33], [68]
as shown in Fig. 3(b), equivalently residue signals or negative
rain streaks, could recover high frequency details better. The
added bypass connection in Fig. 3(c) leads the network training
to converge faster and to a better state.

To utilize temporal redundancies and model motion con-
text among frames, the recurrent units are used to fuse
spatial features along the temporal axis. The recurrent units
can be convolutional recurrent connections [29] as shown
in Fig. 3(d) or gated ones, i.e. long short-term memory
units [48] and gated recurrent units [11] as shown in Fig. 3(e).
They are proven effective in capturing inter-frame depen-
dencies and inferring the missing high-frequency details
in a series of video restoration tasks, e.g. video super-
resolution [29], [48]. However, this architecture has its draw-
backs, especially when its training usually relies on the
pretraining of spatial CNN. First, all the information that input
into the next stage of the network comes from the temporal
fusion step only. The training of such a temporal fusion in the
finetuning step may first goes through a dropped performance.
Second, the temporal fusion units, e.g. convolutional recurrent
units or GRUs, are good at modeling inter-frame dependencies.
However, in this fusion step, some spatial appearance details
extracted from single frames may be lost.

To address these issues, we propose to use residual
RNN architecture to replace the normal RNN, as shown
in Figs. 3(f) and (g). In each recurrence, we do not directly
input the temporally fused features into the next stage of
the network. Instead, we first combine the temporally fused
features and single frame spatial features by summation,

where the temporally fused features play a role of residue
features. Then, the aggregated features are forwarded to the
next stage of the network and transformed into the predicted
target frame. This combination is significant, because these
combined two paths can provide temporal dynamics while
preserving the spatial appearance details, and thus offer better
modeling capacities.

B. Dynamic Routing RNN

The generic CNN handles a task with the same components
and parameters for all contexts. The formulation of a convo-
lutional layer as shown in Fig. 4(a) is represented as follows,

H = f (UF + b) , (5)

where F is the layer input, and H is the layer output. f is
usually a nonlinear function, such as ReLU or tanh. U and b
are weight and bias of the convolution. This layer maps the
input feature F to output feature H given any context.

Intuitively, this “one for all” architecture may have limi-
tations when we expect the network can focus on different
mappings in various contexts. For example, in video rain
removal, we expect that foreground textures are preserved in
non-rain regions and the background regions can be smoothed
to remove sparkle noises. Thus, to improve the adaptability
of the generic CNN model, we set a series of network
compositions, and to select some of them to construct a
deep network based on the given context online. As shown
in Fig. 4(b), for some layers, called dynamic convolutions,
there are three convolutions for one convolution layer position.
In each forward or backward process, only one of the three
convolutions is selected and activated. Naturally, this paradigm
can be extended to apply for RNN, as shown in Fig. 4(c).
For dynamic recurrent units (Dynamic R-Unit), there are also
multiple units for each layer position. In each forward or
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backward process, a sub-network is constructed with one
activated recurrent unit for each layer position.

However, these hard designs are difficult to be optimized
in an end-to-end manner. Thus, in the following, we propose
an equivalent soft dynamic routing RNN/CNN. We change
the normal convolution operation to a dynamic routing one as
shown in Fig. 4(b) as follows,

H =
∫

σ
f (UF + b|α) g(α), (6)

where α is a context variable, e.g. an indicator that illustrates
whether a pixel belongs to non-rain, rain streak or rain occlu-
sion regions. f (UF + b|α) is the conditional convolution,
given the context variable α. g(α) is a probability density
function of α having ∫

α
g(α) = 1. (7)

Eq. (6) equals to conducting convolution filters with various α.
Then, these filtered results are weighted together based on
appearance probability of α. When α is discrete-valued, Eq. (6)
is derived as

H =
∑
αi

f i (UF + b) g(αi ),

∑
i

g(αi ) = 1, (8)

f i (·) = f (·|α = αi ).

Similarly, the recurrent neural network can be extended to
a dynamic routing one. The vanilla recurrent unit works in the
following way,

Ht = f (UFt + WHt−1) , (9)

where Ft is the input at the time step t , and Ht is the hidden
state at the time step t . f is usually a nonlinear function,
such as ReLU or tanh. The hidden state Ht can be regarded
as the memory of the network. Ht captures information about
what happened in all previous time steps. Similar to the change
from (5) to (6), given the context information αt at time-step t ,
Eq. (9) is updated as follows,

st =
∫

αt

f (UFt + WHt−1|αt ) g(αt ), (10)

∫
αt

g(αt ) = 1. (11)

When αt is discrete-valued, Eq. (10) can be derived as

Ht =
∑

i

f i (UFt + WHt−1) g(αi
t ), (12)

where ∑
i

g(αi
t ) = 1,

f i (·) = f (·|αt = αi
t ).

Similarly, the implications of Eqs. (12)-(13) are quite
simple. To get a meaningful output Ht , we first estimate a

multi-channel map
{
g(αi

t )
}

showing the appearance probabil-
ity of each context. It shows whether a location belongs to a
category, e.g. smooth regions or fast moving edge regions,
rain regions or non-rain regions et al. Then, based on the
probability map

{
g(αi

t )
}
, Ht is inferred by weighting the

results obtained from the corresponding mappings
{

f i (·)}.

C. Dynamic Routing Residue Recurrent (D3R) Neural
Network for Rain Removal

Based on the above-mentioned dynamic routing mech-
anism, we build a Dynamic Routing Recurrent Residual
Network (D3RNet). The whole network architecture is illus-
trated as Fig. 5. Briefly, we first extract the features Ft of each
frame by a residual CNN. Then, the subsequent components
of D3R-Net predict the negative rains by two paths:

• Single-frame path (denoted by blue lines). This path
directly transforms single frame spatial feature Ft into
the negative rains to estimate the clean background frame.
This path forces the extracted Ft meaningful.

• Multi-frame path (denoted by black and red lines). This
path first fuses the spatial features along the temporal
axis in a dynamic routing way. Several recurrent units are
expected to take responsibility for handling the temporal
fusion in given contexts, e.g. rain or non-rain regions,
to generate a series of temporally fusion results

{
Hi, j

t

}
.

In the certain forward and backward processes, one of
these recurrent units is mainly activated in each time-
step. A Context Selection Gate (CS-Gate) is used to
detect the context and select one of these fused features
(e.g. denoted by red lines) as the final fused feature in
the given context, e.g. H1,3

t and H2,2
t in Fig. 5. Then,

the temporally fused feature is combined with the spatial
feature from a skip connection (denoted by green line)
by a summation operation. At last, the combined feature
is projected into the predicted negative rain streaks by
a CNN.

The details and formalized descriptions of D3R-Net are
illustrated in the following.

1) Single Frame CNN Extractor (SF-CNN): The residual
learning architecture [23], [65] is used for single frame CNN
feature extraction. As shown in Fig. 6, residual blocks are
stacked to build a CNN network. In formulation, let fc

t,k,in
denote the input feature map of the k-th residual block.
The output feature map of the k-th residual block, fc

t,k,out,
is progressively updated as follows:

fc
t,k,out = max

(
0, Wc

t,k,mid ∗ fc
t,k,mid + bc

t,k,mid + fc
t,k,in

)
,

fc
t,k,mid = max

(
0, Wc

t,k,in ∗ fc
t,k,in + bc

t,k,in

)
, (13)

where ∗ signifies the convolution operation. W and b with
subscripts and superscripts denote the weight and bias of
the corresponding convolution layers, respectively. fc

t,k,in =
fc
t,k−1,out is the output features of the (k −1)-th residual block.

There is a by-pass connection here between fc
t,k,in and fc

t,k,out.
This architecture is proven effective in increasing the network
depth and improving network training. The output feature
map is denoted as Ft , where t is the time-step of the frame.
Ft encodes the spatial information of Ot .
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Fig. 6. The CNN architecture for single frame CNN feature extraction.
R-Net, C-Net and JRC-Net adopt this network architecture as well.

2) Recurrent Units: Compared to the single frame rain
removal, video rain removal can make use of temporally
sequential information. To make use of temporal redundancies,
we use recurrent units to connect different frames and fuse
their features along the temporal axis. After obtaining the
aggregated feature in the last time-step of the given recurrent
layer H j

t−1 and that in the last time-step of the previous

recurrent layer H j−1
t−1 , the recurrent units are used to fuse them

to generate the aggregated feature of the current time-step in
the given recurrent layer H j

t , where j indexes layer number
and t indexes the time-step. H0

t is initialized as Ft . In this
fusion process, Gated recurrent units (GRU) [12] are used.
With gate functions, the neuron chooses to read and reset at
a time-step. This architecture updates and aggregates internal
memory progressively, which facilitates its modeling of long-
term temporal dynamics of sequential data. The formulations
are presented as follows,

H j
t =

(
1 − z j

t

)
H j−1

t−1 + z j
t H̃ j

t ,

H̃ j
t = tanh

(
WhH j−1

t + Uh

(
r j

t � H j−1
t−1

))
,

z j
t = σ

(
WzH j−1

t + UzH j−1
t−1

)
,

r j
t = ReLU

(
Wr H j−1

t + Ur H j−1
t−1

)
, (14)

where H j
t is interpreted as the aggregated memory, represent-

ing the accumulated information at the t-th time-step from
adjacent frames. H j

t is also the output of the unit. r j
t is the read

gate, controlling the input information from adjacent frames
to the current one. z j

t is the update gate, deciding how much
information of the current frame should be updated to the
hidden state. H̃ j

t is the new memory information generated at
the t-th time-step.

3) Context Selection Gate (CS-Gate): To percept the con-
text information in modeling temporal dynamics to benefit
the joint spatial and temporal learning, we use a component
to detect the context of rain frames explicitly, which further
guides the successive spatial and temporal feature fusion. CS-
Gate takes H j−1

t−1 and H j−1
t as its input, and predicts α̂t as

follows,

f j,d
t,0 =

[
H j−1

t , H j−1
t−1

]
,

f j,d
t,1 = Wd

t,1 ∗ f j,d
t,0 + b j,d

t,1 ,

f j,d
t,2 = W j,d

t,2 ∗ f j,d
t,1 + bd

t,2,

α̂t (k) =
exp

(
fd
t,2 (k)

)
∑

s=1,2,...,St
exp

(
fd
t,2 (s)

) , (15)

where k indexes the feature map channel, which corresponds
to the context variable, and St is the total number of that. In
our implementation, α̂t aims to predict rain type indicator and
motion segmentation as shown in Fig. 5.

4) Contextualized Fusion: To benefit the joint spatial tem-
poral feature learning in different contexts, we enable to use
several recurrent units at a given time-step of a recurrent layer.
Thus, the aggregated feature H j

t is extended to H j,s
t , where s

indexes the context variable.
Given these features, the output of CS-Gate and the pre-

dicted probability of a context variable α̂t , the final fused
feature is calculated as follows,

H j
t =

S∑
s=1

α̂t (s) H j,s
t . (16)

5) Spatial Temporal Residue Fusion: After the last l-th
recurrent layer, we then combine both temporally fused
feature Hl

t and spatial feature Ft as follows,

Mt = Hl
t + Ft . (17)

6) Single-Frame Reconstruction (SF-Rect): SF-Rect aims to
separate rain streaks based on only spatial features, which
makes Ft good at distinguishing rain streaks and normal
textures. The estimated negative rain streak layer and clean
background frame are represented as follows,

rs
t = fsf (Ft ) , (18)

B̂s
t = Ôt + rs

t . (19)

7) Multi-Frame Reconstruction (MF-Rect): MF-Rect aims
to separate rain streaks or fill in missing rain occlusion
regions based on temporal dynamics, which makes the net-
work capable of modeling motions and temporal dynamics of
background among frames. The estimated negative rain streak
layer and clean background frame are represented as follows,

rm
t = fmf (Mt ) , (20)

B̂m
t = Ôt + rm

t . (21)

8) Loss Function: As above-mentioned, let B̂s
t , B̂m

t
and α̂t denote the estimated background frame with only spa-
tial features, the estimated background frame with both spatial
and temporal features, and context type mask. Let Bt and αt

denote the ground-truth background frame and the degradation
type mask. The loss function of the network includes three
terms: context detection error, background estimation error
based on only spatial features, and that based on both spatial
and temporal features,

lall = λdldetect + λsls-rect + λmlm-rect,

ldetect =
∑
t∈T

⎡
⎣log

⎛
⎝ ∑

k=1,2,...,St

exp
(

fd
t,2 (k)

)⎞
⎠ − αt

⎤
⎦,

ls-rect =
∥∥∥B̂s

t − Bt

∥∥∥2

2
,

lm-rect =
∥∥∥B̂m

t − Bt

∥∥∥2

2
, (22)
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Fig. 7. Top left panel: one example of RainSynLight25. Top right
panel: one example of RainSynComplex25. Bottom panel: two examples of
RainPractical10.

where T is the full set of the time-step that is incorporated
with rain removal context by dynamic routing. λd , λs , and λm

are set to 0.001, 1, and 1, respectively.

V. EXPERIMENTAL RESULTS

We perform extensive experiments to demonstrate the supe-
riority of D3R-Net, as well as effectiveness of its each com-
ponent. Due to the limited space, some results are presented
in the supplementary material.

A. Datasets

We compare D3R-Net with state-of-the-art methods on a
few benchmark datasets:

• RainSynLight25, which is synthesized by non-rain
sequences with the rain streaks generated by the proba-
bilistic model [21]. Compared with the original procedure
in [21], we use a simplified approach. For a sampled
location, we randomly select one streak from the streak
database [21], transform it with a sampled direction
(from −50◦ to 50◦) and zoom it with a random scale
(from 0.2 to 3). The parameters of directions and scales
are consistent but with small-scale variations within a
streak map. The used streaks vary from tiny drizzling
to heavy rain storm and vertical rain to slash line.

• RainSynComplex25, which is synthesized by non-rain
sequences with the rain streak generated by the proba-
bilistic model [21], sharp line streaks [65] and sparkle
noises.

• RainPractical10, ten rain video sequences we collected
from practical scenes from Youtube website,1 GIPHY2

and movie clips.
Some examples of RainSynLight25, RainSynComplex25,

and RainPractical10 are provided in Fig. 7. Our synthesized
training and testing data is from CIF testing sequences, HDTV
sequences3 and HEVC standard testing sequences.4 The aug-
mented video clips are synthesized based on BSD500 [42],
with the artificially simulated motions, including rescaling

1https://www.youtube.com/
2https://giphy.com/
3https://media.xiph.org/video/derf/
4http://ftp.kw.bbc.co.uk/hevc/hm-10.0-anchors/bitstreams/

and displacement. More information about training data and
training details are provided in the supplementary material.

B. Comparison Methods

We compare D3R-Net with six state-of-the-art methods: dis-
criminative sparse coding (DSC) [41], layer priors (LP) [37],
joint rain detection and removal (JORDER) [65], deep detail
network (DetailNet) [18], tensor-based video rain streaks
removal (FastDeRain) [31], temporal correlation and low-rank
matrix completion (TCLRM) [35]. DSC, LP, JORDER and
DetailNet are single frame deraining methods. SE and TCLRM
are video derainig methods. JORDER and DetailNet are deep-
learning based methods.

For the experiments on synthesized data, five metrics
Peak Signal-to-Noise Ratio (PSNR) [30], Structure Similarity
Index (SSIM) [55], Visual Information Fidelity (VIF) [45],
feature-similarity (FSIM) [69], and Universal image Quality
Index (UQI) [54] are used as comparison criteria. Following
previous works, we evaluate the results only in the luminance
channel, since human visual system is more sensitive to
luminance than chrominance information.

C. Quantitative Evaluation

Table I shows the results of different methods on
RainSynLight25 and RainSynComplex25. As observed, our
method considerably outperforms other methods in terms of
both PSNR and SSIM. The PSNR of D3R-Net is higher
than that of JORDER, the state-of-the-art sinlge image rain
removal method, with margins at more than 2.5dB and 6.5dB
on RainSynLight25 and RainSynComplex25, respectively.
D3R-Net also obtains higher SSIM values than JORDER,
with margins at about 0.0199 and 0.1968 on RainSynLight25
and RainSynComplex25, respectively. Compared with SE and
TCLRM, D3R-Net also achieves higher PSNR and SSIM.
The gains of PSNR are more than 5dB and 8dB on Rain-
SynLight25 and RainSynComplex25, respectively. The gains
of SSIM are more than 0.08 and 0.25 on RainSynLight25 and
RainSynComplex25, respectively.

D. Qualitative Evaluation

Figs. 8-9 show the results of synthetic images. It is clearly
observed that, our D3R-Net produces the cleanest result with
the least texture detail loss (least structure details remaining in
estimated rain streak layers). Figs. 10-13 show the results of
practical images. We here only present the zooming-in local
results. Their corresponding full results are provided in the
supplementary material.5 TCLRM and D3R-Net remove the
majority of rain streaks successfully. However, the result of
TCLRM may contain artifacts in the area with large motions,
as denoted by the red arrows. D3R-Net achieves superior per-
formance in both removing rain streaks and avoiding artifacts.

E. Ablation Analysis on Network Architecture

We compare the results with different compositions of the
proposed method. The results with two baseline RNNs are pro-
vided: bidirectional recurrent convolutional network (BRCN)

5http://www.icst.pku.edu.cn/struct/Projects/VideoRainRemoval/Supple.mp4



LIU et al.: D3R-NET FOR VIDEO RAIN REMOVAL 707

TABLE I

OBJECTIVE RESULTS AMONG DIFFERENT RAIN STREAK REMOVAL METHODS ON RainSynLight25
(DENOTED BY Light) AND RainSynComplex25 (DENOTED BY Complex)

Fig. 8. Results of different methods on an example of RainSynLight25. From top to bottom: whole image, local regions of the estimated background layer,
and local regions of the estimated rain streak layer. (a) Rain image. (b) Ground truth. (c) TCLRM. (d) DetailNet. (e) JORDER. (f) FastDeRain. (g) LP.
(h) DSC. (i) D3R-Net.

Fig. 9. Results of different methods on an example of RainSynComplex25. From top to bottom: whole image, local regions of the estimated background
layer, and local regions of the estimated rain streak layer. (a) Rain image. (b) Ground truth. (c) TCLRM. (d) DetailNet. (e) JORDER. (f) FastDeRain. (g) LP.
(h) DSC. (i) D3R-Net.

and GRU. JORDER is the single frame version. B-R denotes
the raw BRCN version without temporal residue learning.
B denotes the BRCN with temporal residue learning. B+R
is the BRCN embedded with rain type in a dynamic rout-
ing way. B+M is a BRCN embedded with motion segmen-
tation in a dynamic routing way. B+R+M is incorporated
with both rain type and motion segmentation. G-R denotes
the raw GRU without temporal residue learning. G denotes
the GRU network with temporal residue learning. G+R is

the GRU embedded with rain type in a dynamic routing way.
G+M is a GRU embedded with motion segmentation in a
dynamic routing way. G+R+M is incorporated with both rain
type and motion segmentation.

The comparison results are presented in Table II and
Table III. The comparison between JORDER and B-R, and
that between JORDER and G-R show the importance of joint
modeling spatial and temporal redundancy. From JORDER
to B-R and G-R, the performance is largely improved with
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Fig. 10. Results of different methods on practical images. Their full resolution results are provided in the supplementary material. (a) Rain image.
(b) TCLRM. (c) DetailNet. (d) JORDER. (e) FastDeRain. (f) DSC. (g) LP. (h) D3R-Net.

Fig. 11. Results of different methods on practical images. Their full resolution results are provided in the supplementary material. (a) Rain image.
(b) TCLRM. (c) DetailNet. (d) JORDER. (e) FastDeRain. (f) DSC. (g) LP. (h) D3R-Net.

gains of 5.48dB in PSNR, 0.1434 in SSIM and 6.18 dB in
PSNR, 0.1762 in SSIM, respectively. The usage of spatial
temporal residue learning (B and G) leads to higher metric
scores, with gains of 0.20dB in PSNR, 0.0167 in SSIM and
0.32 dB in PSNR, 0.0135 in SSIM, compared with B-R and
G-R respectively. It can be also observed that, embedding
motion segmentation and rain type in the dynamical routing

way can boost the performance and the joint incorporation
provides the best evaluation performance. Note that, for a
fair comparison, we control that the parameter number of raw
BRCN is greater than that of BRCN embedded with rain type
and motion segmentation and that the parameter number of
raw GRU is greater than that of GRU embedded with rain type
and motion segmentation. The channel number of the recurrent
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Fig. 12. Results of different methods on practical images. Their full resolution results are provided in the supplementary material. (a) Rain image.
(b) TCLRM. (c) DetailNet. (d) JORDER. (e) FastDeRain. (f) DSC. (g) LP. (h) D3R-Net.

TABLE II

OBJECTIVE EVALUATION RESULTS AMONG DIFFERENT VERSIONS OF

THE PROPOSED METHOD WITH BRCN ARCHITECTURE
ON RainSynComplex25

TABLE III

OBJECTIVE EVALUATION RESULTS AMONG DIFFERENT VERSIONS OF

THE PROPOSED METHOD WITH GRU ARCHITECTURE

ON RainSynComplex25

layers of raw BRCN and GRU is 64 and that embedded with
rain type and motion segmentation is 16. The comparison
of B+R+M and G further demonstrates the effectiveness of
the proposed dynamical routing context embedding method.
B+R+M achieves superior performance with less parameters.

F. Computer Vision Applications

Our D3R-Net not only significantly improves the visibility
but also enhances the performance of successive computer
vision system. Fig. 14 presents the optical flow estimation
of synthesized rain frames, non-rain frames and the derained

results of our D3R-Net. It is demonstrated that, the existence
of rain streaks contaminates the optical flow estimation.
Comparatively, the optical flow estimation of the derained
results by D3R-Net is more accurate, visually similar to that
of ground truth non-rain frames.

G. Running Time Comparison

Table IV compares the running time of several state-of-
the-art methods. All baseline methods are implemented in
MATLAB. Our methods are implemented on the Caffe’s
Matlab wrapper. DetailNet, JORDER, FastDeRain and
D3R-Net are implemented on GPU. LP, DSC and TCLRM
are implemented on CPU. We evaluate the running time
of all algorithms with the following machine configuration:
Intel Core(TM) i7-6850K @ 3.60GHz, 64 GB memory and
TITAN GeForce GTX 1080. Our D3R-Net obtains comparable
running time to FastDeRain and JORDER, and runs much
faster than TCLRM, LP and DSC. In general, our methods in
GPU are capable of dealing with a 500 × 500 rain image less
than 5s.

H. Performance and Parameter Analysis

We also provide the objective results and parameter numbers
of deep learning-based methods in Table V. It is observed
that, compared with the performance improvement (0.81 dB
and 1.86 dB in PSNR as well as 0.0263 and 0.1023 in
SSIM) from JORDER to DetailNet with a cost of more than
5 times additional parameters, the performance improvement
(2.59 dB and 6.83 dB in PSNR as well as 0.0199 and
0.1968 in SSIM) from JORDER to D3R-Net is quite efficient
and economical. It is showed that, our D3R-Net uses more
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Fig. 13. Results of different methods on practical images. Their full resolution results are provided in the supplementary material. (a) Rain image.
(b) TCLRM. (c) DetailNet. (d) JORDER. (e) FastDeRain. (f) DSC. (g) LP. (h) D3R-Net.

TABLE IV

OBJECTIVE RESULTS AND PARAMETER ANALYSIS AMONG DIFFERENT RAIN STREAK REMOVAL METHODS

ON RainSynLight25 (DENOTED BY Light) AND RainSynComplex25 (DENOTED BY Complex)

Fig. 14. Evaluation of optical flow estimation on synthetic rain images and
derained results.

TABLE V

THE TIME COMPLEXITY (IN SECONDS) OF D3R-NET COMPARED
WITH STATE-OF-THE-ART METHODS

parameters, however, significant gains are indeed achieved.
It is worthwhile to introduce more parameters to model the

temporal dependencies between frames and incorporate the
detected video context in D3R-Net.

VI. CONCLUSION

In this paper, we proposed a hybrid rain model to depict both
rain streaks and occlusions. Then, a Dynamic Routing Residue
Recurrent Network (D3R-Net) was built to seamlessly inte-
grate context variable estimations, and a rain removal based
on both spatial appearance feature and temporal coherence.
The rain type indicator and motion segmentation were embed-
ded into D3R-Net in a dynamic routing way, flexible to be
extended to incorporate other context information. Extensive
experiments on a series of synthetic and practical videos with
rain streaks verified the superiority of the proposed method
over previous state-of-the-art methods.
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